Unit 5 April 28, 2017April 28, 2017 Danish Sadiq Unit 5: Q.1 Choice the correct option (A,B,C,D) ? 1. H. C. F of p3q – pq3 and p5q2 – p2q5 is: (a) pq(p2 – q2) (b) pq(p – q) (c) p2q2(p – q) (d) pq(p3 – q3) 2. L. C. M of a2 + b2 and a4 – b4 is: (a) a2 + b2 (b) a2 – b2 (c) a4 – b4 (d) a – b 3. H. C. F of a2 – b2 and a3 – b3 is: (a) a – b (b) a + b (c) a2 + ab + b2 (d) a2 – ab + b2 4. What should be added to x4 + 16 to make it a complete square? (a) 8×2 (b) – 9×2 (c) 16×2 (d) 4×2 5. General form of linear equation is: (a) ax + b = 0 (b) ax2 + bx + c = 0 (c) a + b = 0 (d) a + bx ≤ 0 6. Solution of equation = 7 is: (a) {20} (b) {26} (c) {30} (d) {42} 7. If the capacity “C” of an elevator is at most 1600 pounds, then: (a) C < 1600 (b) C ≥ 1600 (c) C ≤ 1600 (d) C > 1600 8. |- x| is equal to: (a) – x (b) x2 (c) x (d) ± x 9. General form of linear inequality is: (a) ax + b < 0 (b) ax2 + bx +c < 0 (c) a + b < 0 (d) a + bx ≤ 0 10. If a < b or a = b or a > b, then this property is called: (a) Trichotomy property (b) Transitive property (c) Closure property (d) Associative property Q. 2 (Short Questions) 1.Find H. C. F 16a2b3, 48a3b4, 80a2b2 2.Find H. C. F by factorization: x2 + 5x + 6, x2 – 4x – 12 3.Define Linear Equation. 4.Solve the inequality 3(2x + 1) – 2(2x + 5) < 5(3x – 2) 5.Solve the inequality – 4 < 3x + 5 < 8 Please follow and like us: